The Science of Algae

West Bishop
Algae and Aquatic Research Scientist

Todd Horton
Aquatic Market Development Manager
Email: toddh@sepro.com Phone: 864-561-3640

SePRO Corporation
SePRO Research and Technology Campus,
16013 Watson Seed Farm Rd., Whitakers, NC 27891
The Algae

• Diverse Classification (many kingdoms)

• Elaborate Characteristics

• No true roots, stems or leaves
• Over 30,000 species
• Identification
 — Important in determining management
Introduction to Algae Phyla

- **Chlorophyta**
 - Green algae

- **Cyanophyta**
 - Blue-green algae

- **Charophyta**
 - Plant like, erect

- **Euglenophyta**
 - Flagellated, eye spot (some red)
Introduction to Algae Phyla

- **Pyrrophyta**
 - Dinoflagellates, transverse flagellum

- **Bacillariophyta**
 - Diatoms, silica wall

- **Chrysophyta**
 - Yellow-green

- **Haptophyta**
 - Golden algae
Seasonal Succession
General Pattern
Algae Succession
The good?
The bad
Problematic Algae

Algal impacts

Economic

Drinking/irrigation
Tourism
Property values

Ecological

Toxins /taste & odor compounds
Disrupt habitat/ Outcompete

Water characteristics

(Vision. Science. Solutions.)

(Speziale et al. 1991; Falconer 1996; WHO 2003)
Algae Impacts

- Water quality and ecological
 - Oxygen demand
 - pH fluctuations
 - Densities

- Secondary Compounds
 - Toxins
 - Microcystins “liver”
 - Saxitoxins “brain”
 - LPS “stomach”
 - Aplysiatoxins “skin”
 - Taste and odor
 - Geosmin “dirty”
 - MIB “fishy”
Proactive Management
Sources of Nutrients

- Fertilizer
- Pet waste
- Wildlife
- Livestock/agriculture
- Municipal wastewater
- Industrial effluent
- Atmospheric deposition

Scotts to remove phosphorus in fertilizer
Phosphorus

• Limiting nutrient in freshwater
• Correlative to
 – Algae biomass
 – Increased bloom frequency
 – Harmful algae blooms (N:P)
 – Trophic status
 – 1 pound P supports 500 pounds algae
• Prevention approach (NPDES)

<table>
<thead>
<tr>
<th>Trophic Status</th>
<th>Phosphorus</th>
<th>Chlorophyll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligotrophic</td>
<td>12 ppb</td>
<td>0-2.6</td>
</tr>
<tr>
<td>Mesotrophic</td>
<td>12-24 ppb</td>
<td>2.7-20</td>
</tr>
<tr>
<td>Eutrophic</td>
<td>25-96 ppb</td>
<td>20-56</td>
</tr>
<tr>
<td>Hypereutrophic</td>
<td>> 96 ppb</td>
<td>> 56</td>
</tr>
</tbody>
</table>
Phosphorus (Evil P) Mitigation

• External BMP’s critical
• Internal accumulation (often a significant P fraction)
 - TN:TP ratio 5:1 cyanobacteria overwhelmingly dominant
 artificially induced (Ghadouani et al. 2003)
 - Low TN:TP cyanobacteria dominate (Lake Michigan) (Seale et al. 1987)
 - TN:TP ratio 29:1, dominated by green algae (Smith 1983; 12 lakes throughout the world)
 - Si:P < 25:1 Microcystis dominates, more silica more Asterionella (Holm & Armstrong 1981)

• Cyanobacteria use: carbon (use CO2 and CO3), Light (Phycocyanin), Temperature (>24C, not always), Moving water (Planktothrix, Anabaena planctonica)
Nitrogen Fixation

\[\text{N}_2 (g) + 3 \text{H}_2 (g) \rightleftharpoons 2 \text{NH}_3 (g) \]

Heterocysts

Paerl 1990; Paerl et al. 1991
Phosphorus Management Options

• Chemical
 – Lanthanum modified bentonite (Phoslock, specific, no buffer, permanent)
 – Aluminum sulfate (Alum, non-specific, pH crash, release)
 – Algaecide/phosphorus remover (SeClear)
 – Polymers (Floc Log, Chitosan)
 – Iron (non-specific, release)/ Calcium (high pH only, release)

• Other
 – Aeration (oxygenate benthic layers)
 – Dredging
 – Bacteria?
Phoslock Application
Park Project using reclaimed water

Before Phoslock

After Phoslock
Park Lake Results

Soluble Phosphorus
• Pre Treatment 0.062 mg/l
• Post Treatment < 0.010 mg/l
 – Maintained low from November to March
 – No cyanobacteria blooms seen

Total Phosphorus
• Pre Treatment 0.082 mg/l
• Post Treatment 0.037 mg/l

Secchi Disk
• 0.25 to 4 feet
Treated with Phoslock

No Phoslock Treatment
Reactive
Control Techniques

- **Action Options**
 - **Mechanical**
 - harvesters, sonication
 - **Physical**
 - dyes, aeration, raking
 - **Biological**
 - bacteria, grass carp, Tilapia
 - **Chemical**

VISION. SCIENCE. SOLUTIONS.
USEPA Algaecides

- Diquat Dibromide
- Endothal
- Peroxides
- Copper (Captain / SeClear)
 - Chelated v. free ion
- Adjuvants
70% reduction in P

Neurotoxins/
Hepatotoxins/
Geosmin

305,000 cells/mL

Copper
sulfate

VISION. SCIENCE. SOLUTIONS.
Field Site 1

<table>
<thead>
<tr>
<th>Site Name:</th>
<th>K Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Location:</td>
<td>Galion, OH</td>
</tr>
<tr>
<td>Size:</td>
<td>1/3 acre</td>
</tr>
<tr>
<td></td>
<td>4 ft average depth</td>
</tr>
</tbody>
</table>

Water Character:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.9</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>44</td>
<td>Conductivity</td>
</tr>
<tr>
<td>Hardness</td>
<td>48</td>
<td>Total Phosphorus</td>
</tr>
</tbody>
</table>

0.4 mg Cu/L on algal mats, ONE application (treated 7/16/11)
“Worst ever filamentous mats”... “slimy, brownish”
Field Site 2

<table>
<thead>
<tr>
<th>Site Name:</th>
<th>Golf Course Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Location:</td>
<td>Coastal, NC</td>
</tr>
<tr>
<td>Size:</td>
<td>0.47 acre</td>
</tr>
<tr>
<td></td>
<td>3.5 ft average depth</td>
</tr>
<tr>
<td>Water Character:</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>106</td>
</tr>
<tr>
<td>Hardness</td>
<td>114</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>4.8</td>
</tr>
<tr>
<td>Conductivity</td>
<td>282</td>
</tr>
<tr>
<td>Turbidity</td>
<td>17.5</td>
</tr>
</tbody>
</table>

The Mess

- SeClear Algaecide & Water Quality Enhancer
 - Applied at 200ppb + 1% sufactant to ¼ of the pond on 7/21/11
 - After 2 applications (3 weeks apart) algae gone
“Looks better than it ever has with very little re-growth”

- From 75% to 5% coverage in one week
 < 2% after three weeks
- Total Phosphorus decreased from 1502 to 1018 ppb after 5 treatments (32%)
Summary

• Algae are diverse and widespread throughout water resources
• Algae can restrict uses of a water resource and pose threats to biota
• Phosphorus mitigation is a critical piece to algae management
• Algaecides can control nuisance algae and restore a balanced community
Thank You